Tober447

Tober447 t1_j7uq41s wrote

You would take the output of a layer of your choice from the trained cnn (as you do now) and feed it into a new model, that is the autoencoder. So yes, the weights from your model are kept, but you will have to train the autoencoder from scratch. Something like CNN (only inference, no backprop) --> Decoder --> Latent Space --> Encoder for training and during inference you take the output of the decoder and use it for visualization or similarity.

4

Tober447 t1_j7u90qp wrote

You could try an autoencoder with CNN layers and a bottleneck of 2 or 3 neurons to be able to visualize these embeddings. The autoencoder can be interpreted as non-linear PCA.

​

Also, similarity in this embedding space should correlate with similarity of the real images/whatever your CNN extracts from the real images.

5