Submitted by kingfung1120 t3_z2kb6r in deeplearning
First_Bullfrog_4861 t1_ixjazoo wrote
Reply to comment by JH4mmer in How to efficiently re-train a classification model with an addition of a new class? by kingfung1120
ok, got it. however, in my experience the number of labels is far less obvious in real world datasets than one might expect. consider an example with images of bottles, cups and glasses, so three labels.
a model trained on these three labels will need revision if further down after the deployment process ‚bottles‘ need to be split in ‚plastic bottles‘ and ‚glass bottles‘. both label sets are perfectly valid, due to the hierarchical nature of things.
anyway, my point is actually another one: afaik this will require dataset relabeling and fully iterate the training process on the newly labeled dataset.
or is there a faster way to make the model aware of the more finegrained bottle labels?
i mean, without access to data of cups and glasses, basically inform it of more finegrained bottle types but let it still keep its knowledge of cups and glasses.
Viewing a single comment thread. View all comments