Submitted by SAbdusSamad t3_10siibd in MachineLearning
Jurph t1_j71nymu wrote
I recommend diving in, but getting out a notepad and writing down any term you don't understand. So if you get two paragraphs in and someone says this simply replaces back-propagation, making the updated weights sufficient for the skip-layer convolution
and you realize that you don't understand back-prop
or weights
or skip-layer convolution
... then you probably need to stop, go learn those ideas, and then go back and try again.
For deep neural nets, back-propagation, etc., there will be a point where a full understanding will require calculus or other strong mathematic principles. For example, you can't accurately explain why back-prop works without a basic intuition for the Chain Rule. Similarly, activation functions like ReLu and sigmoid require a strong algebraic background for their graphs to be a useful shorthand. But you can "take it on faith" that it works, treat that part of the system like a black box, and revisit it once you understand what it's doing.
I would say the biggest piece of foundational knowledge is the idea of "functions", their role in mappings and transforms, and how things similar to Newton's Method are meant to work to get approximate solutions after several steps. A lot of machine learning is based on the idea of expressing the problem as a composed set of mathematical expressions that can be solved iteratively. Grasping the idea of a "loss function" that can be minimized is core to the entire discipline.
[deleted] t1_j72u4c2 wrote
[deleted]
Jurph t1_j73ozbe wrote
Hey, I dove into "Progressive Growing of GANs" without knowing what weights were. And now here I am, four or five years later. I've trained my own classifiers based on ViTs, DNNs, written python interfaces for them, and I'm working on tooling to make Automatic1111's GUI behave better with Stable Diffusion. We've all got to start somewhere.
Viewing a single comment thread. View all comments