Viewing a single comment thread. View all comments

minhrongcon2000 OP t1_iyc2a84 wrote

So it does mean that Transformer truly shines when the amount of data is huge right (maybe the word huge is a bit underwhelming for this)

1

entropyvsenergy t1_iyd6mw0 wrote

Transformers do well with lots of data. This is because the transformer is an extremely flexible and generic architecture. Unlike a fully connected neural network where each input is mapped through a weight matrix to the next layer and the weight matrices are fixed with respect to any input, transformers use attention blocks where the actual "effective" weight matrices are computed using the attention operation using query, key, and value vectors and thus depend on the inputs. What this means is that in order to train a transformer model you need a lot of data in order to get better performance than less flexible neural network architectures such as LSTMs or fully connected networks.

1

yannbouteiller t1_iydt54w wrote

Considering fully connected networks as "less flexible" than transformers sounds misleading. Although very generic, as far as I can see, transformers have much more inductive bias than, e.g., an MLP that would take the whole sequence of word embeddings as input.

1