Submitted by Balance- t3_124eyso in MachineLearning
GPT-4 and professional benchmarks: the wrong answer to the wrong question
OpenAI may have tested on the training data. Besides, human benchmarks are meaningless for bots.
Problem 1: training data contamination
To benchmark GPT-4’s coding ability, OpenAI evaluated it on problems from Codeforces, a website that hosts coding competitions. Surprisingly, Horace He pointed out that GPT-4 solved 10/10 pre-2021 problems and 0/10 recent problems in the easy category. The training data cutoff for GPT-4 is September 2021. This strongly suggests that the model is able to memorize solutions from its training set — or at least partly memorize them, enough that it can fill in what it can’t recall.
As further evidence for this hypothesis, we tested it on Codeforces problems from different times in 2021. We found that it could regularly solve problems in the easy category before September 5, but none of the problems after September 12.
In fact, we can definitively show that it has memorized problems in its training set: when prompted with the title of a Codeforces problem, GPT-4 includes a link to the exact contest where the problem appears (and the round number is almost correct: it is off by one). Note that GPT-4 cannot access the Internet, so memorization is the only explanation.
rfxap t1_jdzfxd1 wrote
There are other benchmarks to look at though. Microsoft Research tried an early version of GPT-4 on LeetCode problems that were published after the training data cutoff date, and they got results similar to human performance in all difficulty categories: https://arxiv.org/abs/2303.12712 (page 21)
What should we make of that?