Viewing a single comment thread. View all comments

Beautiful-Gur-9456 OP t1_je3qsdu wrote

Nope. I mean the LPIPS loss, which kinda acts like a discriminator in GANs. We can replace it to MSE without much degradation.

Distilling SOTA diffusion model is obviously cheating 😂, so I didn't even think of it. In my view, they are just apples and oranges. We can augment diffusion models with GANs and vice versa to get the most out of them, but what's the point? That would make things way more complex. It's clear that diffusion models cannot beat SOTA GANs for one-step generation; they've been tailored for that particular task for years. But we're just exploring possibilities, right?

Aside from the complexity, I think it's worth a shot to replace LPIPS loss and adversarially train it as a discriminator. Using pre-trained VGG is cheating anyway. That would be an interesting direction to see!

2